jueves, 5 de julio de 2012

Juegos en Forma Coalicional


Un juego coalicional o cooperativo se caracteriza por un contrato que puede hacerse cumplir. La teoría de los juegos cooperativos da justificaciones de contratos plausibles. La plausibilidad de un contrato está muy relacionada con la estabilidad.
Si los jugadores pueden comunicarse entre sí y negociar un acuerdo antes de los pagos, la problemática que surge es completamente diferente. Se trata ahora de analizar la posibilidad de formar una coalición de parte de los jugadores, de que esa coalición sea estable y de cómo se deben repartir las ganancias entre los miembros de la coalición para que ninguno de ellos esté interesado en romper la coalición.
Juego 1 .- Empecemos con el ejemplo más sencillo. Supongamos que tres jugadores, Ana, Benito y Carmen, tienen que repartirse entre sí cien euros. El sistema de reparto tiene que ser adoptado democráticamente, por mayoría simple, una persona un voto. Hay cuatro posibles coaliciones vencedoras: ABC, AB, BC y AC, pero hay infinitas formas de repartir los pagos entre los tres jugadores.
Supongamos que Ana propone un reparto de la forma A=34, B=33 y C=33. 
Benito puede proponer un reparto alternativo de la forma A=0, B=50 y C=50 
Carmen estará más interesada en la propuesta de Benito que en la de Ana. Pero puede proponer una alternativa aún mejor para ella: A=34, B=0 y C=66. 
A Benito es posible que se le ocurra alguna propuesta mejor para atraer a Ana.
El juego puede continuar indefinidamente. No tiene solución. No hay ninguna coalición estable. Sea cual sea la propuesta que se haga siempre habrá una propuesta alternativa que mejore los pagos recibidos por cada jugador de una nueva mayoría.
Definición: En los juegos con transferencia de utilidad se llama solución a una propuesta de coalición y de reparto de los pagos que garantice estabilidad, es decir, en la que ninguno de los participantes de una coalición vencedora pueda estar interesado en romper el acuerdo.
Juego 2 .- Modifiquemos ahora el ejemplo. En vez de "un hombre un voto" consideremos que hay voto ponderado. Ana tiene derecho a seis votos, Benito a tres y Carmen a uno. Las posibles mayorías son las siguientes: ABC, AB, AC, A.
En esta situación Ana propondrá un reparto de la siguiente forma: A=100, B=0 y C=0. Ese reparto se corresponde con una coalición estable en la que los seis votos de Ana estarán a favor. Es una solución única. Ana no aceptará ningún reparto en el que ella obtenga menos de 100 euros y sin la participación de Ana no hay ninguna coalición vencedora.
Definición 5 Se llama "valor del juego" al pago que un jugador tiene garantizado que puede recibir de un juego si toma una decisión racional, independientemente de las decisiones de los demás jugadores. Ningún jugador aceptará formar parte de una coalición si no recibe como pago al menos el valor del juego.
En el juego 1, el valor del juego es cero para los tres jugadores. En el juego 2 el valor del juego para Ana es cien y para Benito y Carmen es cero.
Juego 3 .- Pongamos un ejemplo algo más realista y, por tanto, un poco más complejo. Supongamos un municipio en el que cinco partidos políticos se han presentado a las elecciones: el Partido Austero (PA), el Partido Benefactor (PB), el Partido Comunal (PC), el Partido Democrático (PD) y el Partido de la Esperanza (PE). En las elecciones, han obtenido el siguiente número de concejales:
PA=11 
PB=8 
PC=5 
PD=2 
PE=1
Como ningún partido ha conseguido la mayoría absoluta, es necesario que se forme una coalición para gobernar el municipio. El presupuesto anual del municipio es de 520 millones de euros. La coalición gobernante debe asignar los cargos y las responsabilidades del ayuntamiento a los diferentes partidos. En las negociaciones se debe acordar el reparto del presupuesto, cargos y responsabilidades entre los partidos. Suponemos que no hay simpatías ni antipatías ideológicas y que los cargos y responsabilidades son valorados exclusivamente según el presupuesto económico que controlan. Supondremos, para simplificar, que hay disciplina de voto y que no son posibles las traiciones internas.
Análisis del juego 3. Como el número total de concejales es 27, la coalición vencedora debe disponer al menos de 14 votos. A diferencia del juego 2, no hay ningún jugador imprescindible para ganar. Si utilizamos la definición que dimos arriba, el valor del juego para todos los jugadores es cero ya que ninguno tiene garantizada su pertenencia a la coalición vencedora.
Definición 6: Se llama "valor de Shapley" a la asignación que recibe cada jugador en una propuesta de reparto según un criterio de arbitraje diseñado por Lloyd S. Shapley. El criterio consiste en asignar un pago a cada jugador en proporción al número de coaliciones potencialmente vencedoras en las que el jugador participa de forma no redundante.
Un jugador es redundante en una coalición si no es imprescindible para que esa coalición resulte vencedora.

Juegos en Forma Estratégica


En el ejemplo que estamos analizando, el jugador 1 tiene dos estrategias I y D; mientras que el jugador 2 tiene cuatro estrategias dadas por
i 1 i 2 , i 1 d 2, d 1 i 2 , d 1 d 2
Podemos representar los pagos en la siguiente matriz, cuyas entradas son los vectores de pagos,
Notemos que las matrices de pagos para los jugadores 1 y 2 son, respectivamente,
El par de estrategias (D; d 1 i 2 ) es un equilibrio de Nash porque ninguna desviación unilateral de los jugadores les permite mejorar sus pagos, dados por (4; 8).
Definición 1: Sea N = {1,2,…., n} un conjunto de jugadores. Un juego estratégico de n personas se representa por , donde X i es el espacio de las estrategias del jugador i, y es la función de pagos del jugador i.
Cada combinación estratégica se denomina un escenario o resultado del juego. Dados un escenario x = (x 1 ; : : : ; x n ) y una estrategia del jugador i; denotamos mediante (x -i ; y) el escenario que obtenemos de x; reemplazando su i-ésima componente x i por y: Usando esta notación, vamos a definir el concepto más importante de la teoría de juegos no cooperativos.

Juegos en Forma Gráfica


Fang, Hipel y Kilgour proponen el siguiente modelo gráfico para un juego no cooperativo. Este consiste en un conjunto N = {1; 2;:::; n} de jugadores, un conjunto U = {1; 2;:::;u} de escenarios, una familia de grafos dirigidos D i = (U;A i ) para cada jugador , y una familia de funciones de pago .
El modelo se completa definiendo el conjunto de movimientos que un jugador puede realizar para cambiar (unilateralmente) de escenario y así obtener los grafos dirigidos D i . Dado que en el juego el objetivo es aumentar los pagos que recibe el jugador, tenemos las siguientes definiciones:
Dado un escenario g y un jugador i, el conjunto de los escenarios que el jugador puede alcanzar unilateralmente desde g se denota por S i (g). Si además, i recibe un pago estrictamente mayor, los escenarios de mejora unilateral para i son:
Introducimos los siguientes conceptos de estabilidad y equilibrio.
Definición 3: Un escenario es estable Nash para el jugador i si . Un escenario es secuencialmente estable para el jugador i si para cualquier existe al menos un escenario con .
Definición 4: Un equilibrio de Nash es un escenario que es estable Nash para todos los jugadores. Un equilibrio secuencial es un escenario que es secuencialmente estable para todos los jugadores.

La Guerra de los Sexos


El modelo de "La guerra de los sexos" es un ejemplo muy sencillo de utilización de la teoría de juegos para analizar un problema frecuente en la vida cotidiana. Hay dos jugadores: "ÉL" y "ELLA". Cada uno de ellos puede elegir entre dos posibles estrategias a las que llamaremos "Fútbol" y "Discoteca".
Supongamos que el orden de preferencias de ÉL es el siguiente:
•  (Lo más preferido) EL y ELLA eligen Fútbol.
•  EL y ELLA eligen Discoteca.
•  EL elige Fútbol y ELLA elige Discoteca.
•  (Lo menos preferido) El elige Discoteca y ELLA elige Fútbol.
Supongamos que el orden de preferencias de ELLA es el siguiente:
•  (Lo más preferido) ÉL y ELLA eligen Discoteca.
•  EL y ELLA eligen Fútbol.
•  EL elige Fútbol y ELLA elige Discoteca.
•  (Lo menos preferido) Él elige Discoteca y ELLA elige Fútbol.
La matriz de pagos es la siguiente, donde los pagos representan el orden de preferncias:
Guerra de los sexos
Matriz de Pagos
  
Ella
  
Fútbol
Discoteca
Él
Fútbol
1º \ 2º
3º \ 4º
Discoteca
4º \ 4º
2º \ 1º
Este juego, tal como lo hemos descrito, es un juego sin repetición y sin transferencia de utilidad. Sin repetición significa que sólo se juega una vez por lo que no es posible tomar decisiones en función de la elección que haya hecho el otro jugador en juegos anteriores. Sin transferencia de utilidad significa que no hay comunicación previa por lo que no es posible ponerse de acuerdo, negociar ni acordar pagos secundarios ("Si vienes al fútbol te pago la entrada").
El problema que se plantea es simplemente un problema de coordinación. Se trata de coincidir en la elección. Al no haber comunicación previa, es posible que el resultado no sea óptimo. Si cada uno de los jugadores elige su estrategia maximín el pago que recibirán (3\3) es subóptimo. Esa solución, no es un punto de equilibrio de Nash ya que los jugadores están tentados de cambiar su elección: cuando ELLA llegue a la discoteca y observe que ÉL se ha ido al fútbol, sentirá el deseo de cambiar de estrategia para obtener un pago mayor.
El modelo que hemos visto es un juego simétrico ya que jugadores o estrategias son intercambiables sin que los resultados varíen. Podemos introducir una interesante modificación en el juego convirtiéndolo en asimétrico a la vez que nos aproximamos más al mundo real. Supongamos que las posiciones 2ª y 3ª en el orden de preferencias de ÉL se invierten. EL prefiere ir solo al Fútbol más que ir con ELLA a la Discoteca. La matriz de pagos queda como sigue:
Guerra de los sexos
Matriz de Pagos
  
Ella
  
Fútbol
Discoteca
Él
Fútbol
1º \ 2º
2º \ 3º
Discoteca
4º \ 4º
3º \ 1º
Si ELLA conoce la matriz de pagos, es decir, las preferencias de ÉL, el problema de coordinación desaparece. Está muy claro que ÉL elegirá siembre la estrategia Fútbol, sea cual sea la elección de ELLA. Sabiendo esto ELLA elegirá siempre la estrategia Fútbol también, ya que prefiere estar con ÉL aunque sea en el Fútbol que estar sola aunque sea en la Discoteca. La estrategia maximín de ambos jugadores coincide. El resultado, marcado con un asterisco, es un óptimo, un punto de silla, una solución estable, un punto de equilibrio de Nash. Obsérvese que esta solución conduce a una situación estable de dominación social del jugador que podríamos calificar como el más egoísta.

Modelo Halcón Paloma


En el lenguaje ordinario entendemos por "halcón" a los políticos partidarios de estrategias más agresivas mientras que identificamos como "paloma" a los más pacifistas. El modelo Halcón-Paloma sirve para analizar situaciones de conflicto entre estrategias agresivas y conciliadoras. Este modelo es conocido en la literatura anglosajona como el " hawk-dove " o el " chicken " y en español es conocido también como "gallina".
Dos vehículos se dirigen uno contra otro en la misma línea recta y a gran velocidad. El que frene o se desvíe ha perdido. Pero si ninguno de los dos frena o se desvía...Este sería un modelo halcón paloma
También se ha utilizado este modelo abundantemente para representar una guerra fría entre dos superpotencias. La estrategia Halcón consiste en este caso en proceder a una escalada armamentística y bélica. Si un jugador mantiene la estrategia Halcón y el otro elige la estrategia Paloma, el Halcón gana y la Paloma pierde. Pero la situación peor para ambos es cuando los dos jugadores se aferran a la estrategia Halcón. El resultado puede modelizarse con la siguiente matriz de pagos.
Modelo Halcón Paloma
Matriz de Pagos
  
Jugador Y
  
Paloma
Halcón
Jugador X
Paloma
2º \ 2º
3º \ 1º
Halcón
1º \ 3º
4º \ 4º
Podemos observar las sutiles pero importantes diferencias de este modelo con el Dilema del Prisionero. En principio la matriz es muy parecida, simplemente se han trocado las posiciones de los pagos 3º y 4º, pero la solución y el análisis son ahora muy diferentes.
Aquí hay dos resultados que son equilibrios de Nash: cuando las estrategias elegidas por cada jugador son diferentes; es decir, cuando uno elige halcón y el otro paloma. Por el contrario, en el Dilema del Prisionero el equilibrio de Nash está en el punto en que ambos jugadores traicionan.
Otra notable diferencia de este juego con otros es la importancia que aquí adquiere el orden en que los jugadores eligen sus estrategias. Como tantas veces en la vida real, el primero que juega, gana. El primero elegirá y manifestará la estrategia Halcón con lo que el segundo en elegir se verá obligado a elegir la estrategia Paloma, la menos mala.

El Dilema del Prisionero


Dos delincuentes son detenidos y encerrados en celdas de aislamiento de forma que no pueden comunicarse entre ellos. El alguacil sospecha que han participado en el robo del banco, delito cuya pena es diez años de cárcel, pero no tiene pruebas. Sólo tiene pruebas y puede culparles de un delito menor, tenencia ilícita de armas, cuyo castigo es de dos años de cárcel. Promete a cada uno de ellos que reducirá su condena a la mitad si proporciona las pruebas para culpar al otro del robo del banco, pero ellos han prometido no delatarse. Las alternativas para cada prisionero pueden representarse en forma de matriz de pagos. La estrategia "lealtad" consiste en permanecer en silencio y no proporcionar pruebas para acusar al compañero. Llamaremos "traición" a la estrategia alternativa.
Los pagos a la izquierda o a la derecha de la barra indican los años de cárcel a los que es condenado el preso X o Y respectivamente según las estrategias que hayan elegido cada uno de ellos.
Dilema del prisionero Matriz de Pagos 
(años de cárcel)
  
Preso Y
  
lealtad
traición
Preso X
lealtad
2 \ 2
10 \ 1
traición
1 \ 10
5 \ 5
Para que una matriz de pagos represente un “dilema del prisionero” deben concurrir las siguientes circunstancias:
•  Confesar uno sólo debe ser mejor para él que no confesar mutuamente.
•  No confesar mutuamente debe ser e su vez mejor que confesar ambos.
•  Cuando cada uno elige una estrategia diferente, confesar y no confesar, la ganancia media entre estas dos estrategias no puede ser mejor que las estrategias de confesar ambos.
Consideremos al prisionero X. Supongamos que cree que el prisionero Y respeta sus promesas anteriores y no confiesa. Si el prisionero X confiesa, se reduciría su pena a un año, lo que es preferible a la opción de no confesar, que acarrea un de condena (dado que el otro prisionero no confiesa). Si por el contrario, cree que el prisionero Y va a confesar, no importando sus promesas anteriores, confesar le da 5 años de cárcel, lo que es mejor que cargar con todas las culpas y 10 años de cárcel al no confesar.
Por lo tanto, no importando lo que haga el prisionero Y, el prisionero X está mejor confesando: es su estrategia dominante. Lo mismo ocurre con el prisionero Y, por lo que el único equilibrio en estrategias dominantes es aquel en que ambos prisioneros confiesan. Es notable que a pesar que cooperando les habría ido mejor, ambos confiesan y terminan peor.
El dilema del prisionero es un juego de enorme importancia. Proporciona una explicación para las dificultades para establecer la cooperación entre agentes económicos. Tiene aplicaciones en pesquería, donde la falta de respeto a los compromisos de restringir la pesca puede llevar a sobreexplotación del recurso, como ocurre actualmente en las pesquerías en Chile. El dilema del prisionero también es relevante en la formación de carteles(acuerdos entre firmas) para subir los precios, ya que las firmas se ven tentadas a vender más de lo acordado a los altos precios que resultan de los carteles, lo que reduce los precios. El dilema del prisionero muestra las dificultades para establecer la colaboración en cualquier situación en la que hacer trampa beneficia a las partes.

martes, 26 de junio de 2012

Ejemplo 1: Cambio de Variables


El dilema de Monty Hall es uno en el que el presentador de un programa de televisión ofrece al concursante elegir un premio que se encuentra tras una de las tres puertas. Dos de ellas contienen cabras y una de ellas un automóvil. El jugador elige una puerta, supongamos la primera y el presentador (Monty) abre la puerta número tres enseñando una cabra. Acto seguido nos ofrece cambiar la puerta ¿qué es mejor teniendo en cuenta que el presentador sabe que hay detrás de cada puerta?

La respuesta es que es mejor cambiar de puerta. Guiándonos por la estadística el presentador al abrir una puerta cerrada ha incrementado las posibilidades que tenemos de llevarnos el premio, pasamos de jugar con 33% de posibilidades al 66% porque en realidad el presentador aumenta nuestras posibilidades al 66% si cambiamos de puerta. Si permanecemos con la elegida nuestras posibilidades se mantienen en un 
66%
33%. En este enlace podéis encontrar una explicación en más profundidad de las matemáticas y en este otro un simulador (en inglés).


Equilibrio de Nash


El equilibrio de Nash se alcanza en una situación en la que ninguno de los jugadores (o agentes) de un juego en el que hay dos o más jugadores, todos conocen los equilibrios de los demás, quieren cambiar unilateralmente su decisión porque cambiarla supondría empeorar su condición. Cuando todos los jugadores han tomado una decisión y no pueden cambiarla sin empeorar su bienestar, se considera que se ha alcanzado un equilibrio de Nash.

El equilibrio de Nash puede no ser Pareto eficiente (es decir, puede haber una situación en la que todos los jugadores incrementen su bienestar sin perjudicar a los demás). No obstante, en ocasiones el equilibrio de Nash es la única alternativa dadas las reglas del juego a pesar de que exista un óptimo de Pareto.

El equilibrio de Nash se ha utilizado para regular situaciones de competencia entre empresas y diseñar subastas de adjudicaciones públicas. Una legislación que tenga en cuenta el equilibrio de Nash puede evitar oligopolios, por eso en la legislación antimonopolio se suele buscar formas de evitar que se pacten precios entre las partes implicadas.

La teoría de juegos


Definición es una rama de la economía que estudia las decisiones en las que para que un individuo tenga éxito tiene que tener en cuenta las decisiones tomadas por el resto de los agentes que intervienen en la situación. La teoría de juegos como estudio matemático no se ha utilizado exclusivamente en la economía, sino en la gestión, estrategia, psicología o incluso en biología.
En teoría de juegos no tenemos que preguntarnos qué vamos a hacer, tenemos que preguntarnos qué vamos a hacer teniendo en cuenta lo que pensamos que harán los demás, ellos actuarán pensando según crean que van a ser nuestras actuaciones. La teoría de juegos ha sido utilizada en muchas decisiones empresariales, económicas, políticas o incluso para ganar jugando al póker. La teoría de juegos es nuestro Concepto de esta semana
Para representar gráficamente en teoría de juegos se suelen utilizar matrices (también conocidas como forma normal) y árboles de decisión como herramientas para comprender mejor los razonamientos que llevan a un punto u otro. Además los juegos se pueden resolver usando las matemáticas, aunque suelen ser bastante sofisticadas como para entrar en profundidad.

Historia

Aunque hubo trabajos anteriores la teoría de juegos empieza con un estudio de Antoine Augustin Cournot sobre un duopolio en el que se llega a una versión educida del equilibrio de Nash ya que se alcanza poco a poco el nivel de precios y producción adecuado. Más tarde se podría decir que el fundador de la teoría de juegos formalmente hablando fue el matemático John von Neuman, el mismo del proyecto Manhattan.
Desde entonces algunos economistas han sido galardonados con el Nobel de Economía por sus trabajos sobre el tema. Destaca Nash, conocido por la película “Una mente maravillosa” y porque es en el equilibrio de Nash dónde se basan muchas conclusiones que se han tomado sobre teoría de juegos aplicada a la vida real.